If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+33x-4.7=0
a = 3; b = 33; c = -4.7;
Δ = b2-4ac
Δ = 332-4·3·(-4.7)
Δ = 1145.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{1145.4}}{2*3}=\frac{-33-\sqrt{1145.4}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{1145.4}}{2*3}=\frac{-33+\sqrt{1145.4}}{6} $
| 8/89=10/x | | 12j=24 | | -15/8m-9=9 | | 15/8m-4=21 | | 7x²-112=0 | | n2-10n+13=0 | | 1.75=-0.2x | | −8x2−6x−x3−5x4+8x=2 | | 3d^2-5d+2=0 | | -10x2x-18=6 | | 3x^2+1=50 | | 6×-5=8-4(2x+7) | | 3-5w-2w=0 | | 6-7a-5a=0 | | 2+y(y)=120 | | 4.4x2.05=9.02 | | k=3(8) | | 7(m-12)=-21 | | t+15=92 | | f-33=23 | | (l-3)(l-2)=30 | | n-2=47 | | t=91-27 | | 97-51=w | | l(l-2)(l-3)=30 | | 6c+-22=3c-7= | | q-4=19 | | 6c+-22=3c+-7 | | 4z(z-3)=0 | | 6x^2+12x-11=0 | | (12)(10)=(x+6)(x-1) | | 7x(3+2)=7 |